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Emerging Technology Hype Cycle
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The Trends of Machine Intelligence

Two Drivers: Raw Data and Data Model
Machine Learning becomes a buzz word for business (InfoWorld)

Big Data is assumed in Machine Learning applications (Gartner)
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Wall Street is gearing up with Machine Learning in fixed income, blockchain,
predictive analytics etc. (McKinsey)

v

Machine Learning is full of contradiction (Thomas Frey, The Da Vinci Inst.)

Source: http://www.dataversity.net/the-future-of-machine-learning-trends-observations-and-forecasts/



It is the year of artificial intelligence !

¥ 3ot When DeepMind AlphaGo
5 win Lee Sedol.......

Can computer read source
codes like a human ?

COBOL Code
DETERMINE-PMHP. 04380074
043900 IF PMHP-FAC HOT = CC-FAC 04390074
044000 MOVE "Y' TO EQF-PMHP 04100074
044100 GO TO EXIT-PMHP. 0410074
044200 INITIALIZE SORT-RECORD. 04420074
044300 MOVE PMHP-FAC TO SORT-FAC. 04430074
Can 044400 MOVE PMHP-CASE TO SORT-CASE. 04440074
044500 IF PMHP-INELIGIBLE-CODE NOT = ZERO 04450074
044600 MOVE 5 TO SORT-PMHP-STATUS 04460074
044700 ELSEIF PMHP-ACCEPT-DECLINE-FLAG =2 04470074
044300 MOVE 4 TO SORT-PMHP-STATUS 04450074
044900 ELSEIF (PMHP-EHROLL-DSS-RESPONSE = 01 OR 02) 04490074
045000  AND PMHP-DISENROLL-DSS-DATE = ZEROES 04500074
045100 MOVE 1 TO SORT-PMHP-STATUS 04510074
045200 ELSEIF PMHP-DISENROLL-DSS-DATE NOT = ZERO 04520074
045300 MOVE 3 TO SORT-PMHP-STATUS 04530074
045400 ELSEIF PMHP-ENROLL-EXTRACT-DATE = ZEROES 04530074
045500  AND PMHP-DISENROLL-REASON NOT = ZERO 04550074
045600 MOVE 3 TO SORT-PMHP-STATUS 04560074
045700 ELSE 04570074
045300 MOVE 2 TO SORT-PMHP-STATUS 04580074

045900 IF PMHP-CORRECTION-DATE > PMHP-ENROLL-EXTRACT-DATE 04590074
046000 MOVE 1 TO SORT-READY-RESEND




Auto Programming Samples
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Tweet to program (http://www.wolfram.com)

Natural Language Programming (http://www.pegasus-project.org)

Cognitive Computing (http://www.ibm.com/watson)

Statistical Machine Translation (https://voutube.com/watch?v=aRSnl5-7vNo)

Pliny Big Code Analytics (http://pliny.rice.edu/index.html)

Code Transplant ( http://crest.cs.ucl.ac.uk/autotransplantation/MuScalpel.html)

Bug Repair - MIT CodePhage (http://news.mit.edu/2015/automatic-code-bug-
repair-0629)

Malware Prevention - Deep Instinct ( hitp://www.deepinstinct.com/#/what-we-do)




Some Basics of Machine Learning

Supervised Learning:

Predicting values. Known targets.
m User inputs correct answers to learn from. Machine uses the information to guess new

Machine Learning

answers.

| s—

Relafionships :
Patterns Muttiple

Hidden Layers

Dependencies :
Deep Learning

Hddensncies o @) @ Unsupervised Learning:

Search for structure in data. Unknown targets.
User inputs data with undefined answers. Machine finds useful information hidden in
data.

Algorithms + Techniques

Supervised Learning

TRAINING
Learn data properties

Linear Regression Decision Trees

Ordinary Least Squares
Regression

K-Nearest Neightbours The machine makes conclusions by TESTING

learning from the data. »

Support Vector Machine Test the properties
It improves its model until optimal >

performance is reached.

Logistic Regression Apply the conclusions to new data and

LOESS (Local Regression)
Naive Bayes
Neural Networks Random Forests

Unsupervised Learning

K-Means Clustering

Hierarchical Clustering

Principal Component Analysis (PCA)

Linear Discriminant Analysis (LDA)

Using a Cost / Loss Function to me:

. gradient descent)

APPLICATION
Use the properties

In a real situation the answers are not known.

Apply the model conclusions to predict the
answers from the inputs. Use the answers in
whatever ne ary.

Source: http://quantdare.com/2016/03/machine-learning-a-brief-breakdown/

compare results to known answers.

The model does not change. It is just tested to
measure how good the machine did after
training.

Useful to detect overfitting. If good enough, it
is ready to be used.




Why learning from source code is
difficult ?

» Programing language syntax structure is well defined in the complier but has
infinite ways of implementing the same business logic

» There is not a universal way of representing program semantic meanings

Existing NLP representation learning algorithms are inapplicable since all of
them are “flat”

» Program symbols (nodes in AST) are discrete and cannot be fed directly to a
neural network

Like NLP, it takes many years to mature multi-language corpus

» Multiple programing languages and systems interconnected together inflates
the complexity permutation




The problems to be resolved in auto
programming?

Semantic Meaning
|ldentification

Persist Code Semantics with Supervised & Un-Supervised
Meta-Language Pattern Machine Learning




Value Proposition - Why Machine
Learning ?
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How does a programmer read the code ?

public static void BubbleSort( int [ ] num ) {

int j;

boolean sortFlag = true; // initialize the flag for while loop
int tempNum;

while ( sortFlag) { %}) @bb\xej

sortFlag=false; //setflag tofalse awaiting a possible swap g
for(j=0; j < num.length -1; j++){ - rft s
if (num[ j] <num[j+1] ){ // compare adjacent array elements _.)@ =i
tempNum = num[ j I; //swap two elements

num[ j] =num[ j+11];
num[ j+1]= tempNum;
sortFlag = true; //shows a swap occurred

2,

Code Pattern (Meta-Language)
In-line Code Comments

Class Name: BubbleSort Loop-> While + ForNext

Similar names: bSort, BubSort, Bubbles..... (NLP) Compare: A<B
Action: Swap A, B

Enterprise Code Application Data Open Source Data Source Code
Convention Corpus Corpus Corpus Ontology

Code Signature




Source Code Representation

» Semantic Annotation

» Triples (‘class A’, ‘inherit from’, ‘class B’); (‘class A’, ‘has bizfunc’, ‘interest
calculation’)

» Resource Description File (RDF)
» Ontological Representation for Machine Learning
» Vector based code block
» Data flow
» Meta Language for Pattern Persistence
» Regular Expression

» Domain Specific Language (DSL)




Learning The Source Code

Feature Engineering Deep Learning Architecture Output

Code Slicin g Supervised Training Un-Supervised Training Multi-
IDENTIFICATION DIVISION SyStem
DATA DIVISION. me Code
PROCEDURE DIVISION..... Code Pattern | S : Ontology

Expression

||||||

Syntax Parsing Reusable

Codes
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Meta Language

Class bSort
o R A Swap VarA->VarB
Condition: VarA < VarB

Business
Rules Doc

Semantic
Annotation patas
Language Recurrent Neural Code
. guag
o Corpus Network Transplant

Data Flow _ Defec.t
Analysis Prediction




Summary

» There is not a single model that can solve all the software development
problems

» Significant effort is needed to develop different language corpus and training
data set. Payback occurs when there is a strategic motive and sustainable
methods embedded in software development life cycle

» It is just the beginning for academic researchers and software vendors to look
at applying machine intelligence into software development. The potential is
huge with more and more algorithmic libraries coming out

» Accuracy will significantly improve if there is an enterprise code standard and
it is being enforced properly

» As more software development counts on open source, it is a logical next step
to extend machine intelligence to transplant codes from open source
repositories
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